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The paper presents a review of modern studies of the Holocene landscape and climatic changes. A
large amount of paleobotanical data and paleoclimatic reconstructions for the forest zone of Central
and Eastern Europe in a frame of latitudinal transect between N52° and N58° were summarized, and
compared with the published materials of paleoecological and paleographical researches for the same
regions. The author analyzed the expected climatic changes according to the scenarios of
representative paths of greenhouse gases concentration, which were compiled by the
Intergovernmental Panel on Climate Change. The obtained data allowed us to determine 3 main stages
of the Holocene paleoenvironmental changes. 1) Fast warming in the early Holocene (11.7-8.0 ka
BP), which included series of climate oscillations. During this period the broadleaf forests replaced the
birch and pine-birch ones that were spread in the periglacial formations in the early Holocene.
Expansion of broadleaf species in Eastern Europe occured 2 thousand years later than in Central
Europe. 2) The Holocene Thermal Maximum (8.0-5.7 ka BP) without any abrupt and short-term
climatic changes. During this period a continuous zone of broadleaf forests occupied Central and
Eastern Europe. 3) Progressive cooling of the second half of the Holocene (5.7 ka BP — present) with
quasiharmonic temperature and precipitation fluctuations. Regional differentiation of landscape cover
became more prominent. Beech and hornbeam started to expanse into the eastern regions, while spruce
spread through the western ones. The Holocene climatic reconstruction throughout the latitudinal
transect in Central and Eastern Europe could be used as the different scenarios of possible climatic
changes in the current century, the author can expect that temperatures growth, especially during
summer, will eventually lead to climate aridization as a result of changes in precipitations/evaporation
ratio, and will probably become there as of of increasing wildfires and weather extremes due to the
uneven precipitation.
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For a long time the assessment of reaction of landscape components to the global climatic
changes has been one of the most important and fundamental scientific issues in need of
comprehensive study. Considering that current tendencies of climate change are primarily shown in
the fast air temperature growth (IPCC, 2013), a retrospective analysis of landscape and climate
conditions of Central and Eastern Europe during the Holocene can be a very useful and efficient for
the adequate understanding of modern processes of environmental transformation under the
influence of global warming, as well as for determination of its main evolutional trends (Velichko,
2012; Bradley, 2008). It is especially interesting to analyze the abrupt and short-term climate
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fluctuations when instability of climate system was more prominent.

First generalization of palynological data on the postglacial stage of nature evolution in Europe,
north to the Alps was performed by F. Firbas (1949), M.I. Neyshtadt (1957) and V.P. Grichuk (1969,
1982). A significant input to the studies of flora and vegetation in the Late Glacial and Holocene
periods was made by N.A. Khotinski (1977). The articles on climatic conditions of the Holocene on
the global and macro-regional scale were written by A.A. Velichko et al. (a series of atlases-
monographs “Dynamics of Landscape Complexes ...” (2002), “Paleoclimate and Paleolandscapes ...”
(2009), “Climates and Landscapes of North Eurasia ...” (2010), by O.N. Solomina (2010),
O.K. Borisova (2014) and some foreign researchers (Davis et al., 2003; Mayewski et al., 2004;
Wanner et al., 2008; Mann et al., 2009; Mauri et al., 2015; Christiansen, Ljungqvist, 2017; PAGES 2k
Consortium, 2013, 2017). A vast amount of works, the most significant of which the author will
address below, was written on the subject of vegetation and climate reconstruction in the Holocene at
the regional scale, where reconstruction was based on palynological data of the soil profiles of
alluvial, lake and bog sediments in Central and West Europe.

In this article the author generalizes paleographic data for the Holocene of Central and West
Europe, for the territory in the belt of latitudinal transect in forest area, between N52° and N58°.
The diversity of physiographical conditions and provincial differences of the modern vegetation along
the studied latitudinal profile allow us to analyze the geographical patterns and regional features of the
way that vegetation of Central and West Europe reacts to climatic changes nowadays, as well as in the
last eras. The Holocene landscapes and climate dynamics revealed from paleobotanical data and
paleoclimatic reconstructions obtained by different methods, were compared to the materials of testate
ameobae, geomorphological, isotope-geochemical and other proxy that were published for the same
territory.

The age of the lower Holocene boundary was 11.7 ka BP, determined by the changes of
isotope-oxygen ice composition in the NGRIP borehole in Greenland (Walker et al., 2019;
Head, 2019). To study vegetation and climate dynamics of the Holocene, the Russian researchers
usually use the Blytt-Sernander periodization scheme, which was originally created for North
Europe and later modified by N.A. Khotinski (1977) for European part of Russia. The foreign
regional modifications of the scheme were widely used until the 1990s and have almost fallen out of
use today, so now researchers usually use the terms of absolute age to reconstruct a sequence of
Holocene events. According to the Blytt-Sernander classification, the Holocene consists of
5 climate periods: Preboreal (11.7-10.5 ka BP), Boreal (10.5-8.8 ka BP), Atlantic (8.8-5.3 ka BP),
Subboreal (5.3-2.6 ka BP) and Subatlantic (2.6 ka BP — present). On the basis of the studied ice
cores and speleothems, the International Commission on Stratigraphy divides the Holocene into
3 periods: Greenlandian — 11700-8236 ka BP to 2000 CE, Northgrippian (mid) — 8236-4250 ka BP
to 2000 CE, and Meghalayan (late) — 4250 ka BP to present (Head, 2019; Walker et al., 2019).
However, the boundaries of sub-eras, especially between the Mid- and Late Holocene, were a
subject of serious discussions between the scientists. In this article to analyze a sequence of the
Holocene events, the author mostly uses the data of absolute date determination in comparison to
the accepted periodization methods, which are considered to be chronological sub-divisions rather
than climatic and stratigraphic.

11.7-8.0 ka BP (Early Holocene, Preboreal, Boreal and Early Atlantic Periods)

There are not many landscape-climate reconstructions for the Preboreal period of the Holocene.
This period is mostly considered to be a unified span of birch and pine-birch forests development.
Despite the very close composition of pollen spectrums, the vegetation along the studied latitudinal
transect shows the signs of sectorial differentiation. In the Early Holocene the forest communities of
its western area included elm, while in the later phase it also included oak, alder and hazel (Fig. 1; Litt
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et al., 2001; de Klerk, 2008). The Latvian profiles showed the particles of hazel and elm pollen in the
spectrum from 11.0 ka BP, while alder and oak became a constant component of spore-pollen spectrums
from 10.1 ka BP (Heikkil4 et al., 2009). Meanwhile, in the western areas vegetation composition kept
the fractions of periglacial flora (Khotinski, 1977). Single pollen grains of deciduous species appeared in
the spectrums of the East European Plain profiles only after 9.7 ka BP (Fig. 2).

Glaciological, palynological and isotope-geochemical studies of the profiles on the continental
and marine sediments in North Europe, which were carried out with a high temporal resolution
(Bjorck et al., 1996), and changes of isotope-oxygen composition of the Greenland ice cores
(Thomas et al., 2007), show that the Preboreal period had some phases of temperature drop
(Fig. 3). The first drop was named a “Preboreal oscillation” and reconstructed for the period of
11.3-11.15 ka BP. The second one, a so-called “10.2 ka BP event”, happened right between the
Preboreal and Boreal periods. According to the changes of K* composition in the GISP2 ice core in
Greenland (Mayewski et al., 2004), acting as an indicator of the Siberian High intensity, and Na™,
reflecting the depth of the Icelandic Low development, the westerlies weakened during this period,
while the Siberian High increased (Fig. 3).

Short-term landscape-climatic changes during the Preboreal period were registered after
detailed studies of some profiles on lake sediments in Netherlands (Bos et al., 2007) and
Switzerland (Lotter et al., 1992). Paleo-environmental changes in the northwest of the East
European Plain connected by Preboreal oscillation were found in the profiles of Medvedevskoye
and Pastorskoye Lakes in Karelia (Subbeto et al., 2003). In the eastern part of the studied area on
the Polovetsko-Kupanskoye bog profile, the Preboreal consists of 2 phases: temperature rise or a
“Polovtsian warming” on its early stage, and temperature drop in its second half, also called a
“Pereslavsky cooling” according to N.A. Khotinski (1977).

Boreal sediments of the Holocene were found in numerous soil profiles in Central and Eastern
Europe. The palynological data showed that at 10.5-8.8 ka BP the birch-pine and oak-pine forests
with elm and hazel undergrowth were widespread in the territory of modern Germany, Poland and
the Baltic states (Fig. 1; Jahns, 2000, 2007; Bos, Urz, 2003; Heikilla, Seppd, 2004; Seppéd, Poska,
2004; Lamentowicz et al., 2008; Galka et al., 2013). Researches of T. Giesecke et al. (2011) was
based on large factual materials and showed that culmination of hazel pollen fraction in the Early
Holocene was almost same both for Western and Central Europe at 10.5-8.0 ka BP. In the east the
increase of deciduous species pollen was slightly delayed. For example, in the profiles of
Mezhuzhol and Staroye Lakes in Belarus, the sum of pollen of broadleaf species at 10.5-10.0 ka BP
did not exceed 5%, and grew up to 20% at 9.5 ka BP (Zernitskaya, Novenko, 2016; Zernitskaya et
al., 2019).

According to the results obtained after some profiles study in the central regions of the East
European Plain, its vast territories were covered with sparse pine-birch forests (Khotinski, 1977;
Velichko et al., 2001; Khotinski, Kilmanov, 1997; Krementsky et al., 2000; Wohlfarth et al., 2007).
In the south, on the Central Russian Upland, the pine-birch forests with some deciduous species
were widespread (Fig. 2; Kilmanov, Serebryanaya, 1986; Novenko et al., 2015).

Climate reconstructions of Central Europe showed that during the Boreal the average air
temperature in January did not exceed -2°C, and the average June temperature was never lower than
15°C (Zagwijn, 1994). According to those reconstructions that were based on the ratio of beetle
species, the summer temperatures of Northern Europe were about 17-19°C, and even higher in
Central Europe (Coope, 1998).

Reconstructions based on the palynological data taken from Mezhuzhol Lake profile in Northern
Belarus (Zernitskaya, Novenko, 2016) showed that the average annual, winter and summer air
temperatures were 4°, -8° and 16°C respectively at 10.5-9.5 ka BP, which was 2°C lower than
nowadays; at 9.5-8.5 ka BP the winter and annual temperatures grew significantly and were about
-6.5° and 6.0°C, while the summer temperatures were close to the current ones, about 18°C.
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Fig. 1. Changes in pollen content of the main forest-forming tree species in the diagrams for the
lake sediments from the Central and Eastern Europe profiles. The short diagrams were made on the
basis of the “European Pollen Database” (2007).
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Fig. 2. Changes in pollen content of the main forest-forming tree species in the diagrams for the
East European Plain profiles, recorded on the basis of O.K. Borisova, K.VV. Kremenetsky and
E.M. Zelikson researches on Dolgoye Lake and with the help of “European Pollen Database”
(2007), other profiles were made on the basis of the author’s records.
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Fig. 3. The main landscape and climatic changes in Europe during the Holocene. Legend: 1 —
winter and summer insolation values at 60°N and 60°S latitude (Berger, Loutre, 1991); 2 —
reconstruction of the mean annual temperature in Europe during the Holocene, expressed as
deviations from current values (Davis et al., 2003); 3 — change of the isotope-geochemical
composition of ice cores GRIP and GISP2 in Greenland: the content of the cation K* and cation Na*
GISP2 ice core (Mayewski et al., 2004), changes in 520 in ice core GRIP (Johnsen et al., 1992);
4 — change in the intensity of ice-rafted debris in the North Atlantic, expressed as a percentage of
petrological markers (Bond et al., 1993); 5 — fluctuations in the level of lakes in France and
Switzerland, the number of radiocarbon dates of higher and lower lake-level events in successive 50
years intervals (Magny, 2004); 6 — changes in micro- and macro-charcoal accumulation rates
(CHAR) in lake and peat deposits in Central and Eastern Europe expressed as Z-score of CHAR
(Feurdean et al., 2020).

Fast warming and relatively warm climate conditions in the Boreal period were also determined for
the coastal territory of the Baltic Sea. For example, Latvian summer temperatures at 10.0 ka BP were
about 17°C (i.e. 1°C lower than modern indices), but they increased by 1.5°C at 9.0 ka BP (Heikkila,
Seppd, 2010). All temperature indices were lower than the modern ones in the central regions of the
East European Plain at 10.1-7.9 ka BP (Khotinski, Kilmanov, 1997; Novenko, Olchev, 2015).
Reconstructions of paleo-temperatures obtained from various natural archives, make it possible
to find a short-term and abrupt climate cold snap, or the so-called “8.2 ka BP event” (Borzenkova et
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al., 2017; Alley et al., 1997; Thomas et al., 2007; Daley et al., 2011). According to our results, the
average annual temperature in the Upper Volga basin in 8.1-8.5 ka BP dropped by 2-3°C (Novenko,
Olchev, 2015). Reconstructions based on the palynological data from the profiles of Estonia (Seppé,
Poska, 2004), Finland (Heikkil&, Sepp&, 2003) and Southern Sweden (Antonsson, Seppé, 2007),
showed that the average annual temperatures decreased by 1.5-2.0°C during the “8.2 ka BP event”.
Reconstructions made on the basis of diatom analysis data showed that the summer temperatures
dropped by 0.75-1.0°C in the north of Finland (Korhola et al., 2000). B.A.S. Davis et al. (2003)
generalized a large number of pollen diagrams and climate reconstructions and reconstructed a
decrease by 1°C in the average annual temperature for Europe at 8.2 ka BP (Fig. 1). The reason for
this significant temperature drop, which was reconstructed in Europe at 8.4-8.0 ka BP, as well as for
the previous Preboreal cold snaps that we already studied, was a weakening of thermohaline
circulation in the North Atlantic region (Teller et al., 2002). During a cold snap at 8.2 ka BP these
changes could be the result of a release of large fresh water masses into the ocean from the large
periglacial Agassiz Lake in North America (Borzenkova et al., 2017; Keigwin, Boyle, 2000).

Reconstructions of the annual sum of precipitation and quantitative characteristics of climate
humidity are a difficult task, and their results for the Early Holocene in Europe can be found only in
a small amount of works (Barber et al., 2004; Harrison et al., 1996; Allen et al., 2007). Since the
studies of A. Blitt at the end of the X1X century, a common opinion stated that the Boreal climate of
the Holocene was dry, which was later noted in many other studies and then made it to climatic
stratigraphic schemes of the Holocene (Khotinski, 1977).

Climate humidity data for the East European Plain proved that temporal and spatial dynamics of
precipitation amount are complicated. According to our studies, the average annual amount at 9.5 ka
BP was lower than the modern values of the Upper Volga basin and in Valday Upland, and higher in
the northwest of the Central Russian Upland (Fig. 4). An almost simultaneous increase of
precipitation in the entire territory of the central regions of European Russia was reconstructed for the
period of 9.1-8.5 ka BP, when precipitation was 100-200 mm higher than nowadays (Novenko,
Olchev, 2015).

Reconstructions of the wildfires changes in the Holocene showed an increased frequency of fires
in different regions during the Boreal period (Zernitskaya et al., 2019; Novenko et al., 2016), which
may indicate that summer precipitation was uneven and fire hazardous meteorological conditions
were recurrent. Once the data on concentration of micro and macro coal particles in the lake and bog
sediments from 117 profiles of Central and Eastern Europe was generalized (Feurdean et al., 2020),
we determined the maximal accumulation speed of these particles in the Holocene, between 9.0 and
8.0 ka BP for the entire macro-region (Fig. 3). This indicated that wildfires were frequent and severe.

Data on lakes level fluctuations can be an indirect source of information on climate humidity.
The studies of some lakes in Switzerland and the French Alps (Magny, 2010) resulted in a complex
humidity dynamics in the Early Holocene and were based on 180 radiocarbon, dendro-
chronological, and archaeological dating. The phases of increased water level in the lakes were
revealed for the periods of 10.3-10.0 and 9.55-9.15 ka BP, between which the level was
significantly lower than nowadays. The studies that took place in southern Sweden (Harrison,
Digerfeldt, 1993) showed an extremely low water level in the lakes at approximately 10.5-9.7 ka
BP, however, then it changed into a quick level rise.

8.0-5.7 ka BP (Mid-Holocene, Mid- and Late Atlantic Period)

Many works on the subject of vegetation and climatic changes in the Holocene showed that
Europe was at its highest heat availability (Khotinski, 1977; Dynamics of Landscape
Components ..., 2002; Paleoclimate and Paleolandscapes ..., 2009; Zagwijn, 1994; Davis et al.,
2003; Mauri et al., 2015; Borisova, 2019) and relatively stable climate conditions (Borisova, 2014;
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Mayewski et al., 2004) at 8.0-5.7 ka BP. In the Russian literary works this period is called the
Holocene climatic optimum (Khotinski, 1977). In the foreign works it is usually called the Mid-
Holocene thermal maximum.

Klyukva Bog Staroselsky Mokh Bog Lake Raigastvere
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Fig. 4. Climatic changes in the East European Plain during the Holocene. Paleoclimatic
reconstructions by data from the Klukva bog (Novenko et al., 2019), Staroselsky Mokh bog
(Novenko et al., 2018) and Lake Raigastvere (Seppa, Poska, 2004).

At 8.0-5.7 ka BP Central and Eastern Europe had a unified zone of deciduous forests (Fig. 1, 2).
Oak, linden, elm and alder forests with sparse yew and holly were growing in the northeastern
Atlantic part of Europe. Oak forests were extremely developed in Germany, Southern Sweden,
Denmark and Poland, supplanting pine formations (Latalowa, Nalepka, 1987; Jahns, 2000, 2007;
Kalis et al., 2003; Lamentowicz et al., 2008; Kulesza et al., 2012; Gatka et al., 2013). EIm, linden,
alder and hazel played a major role in those forests. Spruce and fir were part of the tree stand in the
Hercynian mountains (Black Forest, Thuringian Basin, Bohemian Massif; Harmata, 1987).

In the Baltic states the mixed oak-elm-linden forests with a lot of alder were very widespread.
In the north and east of Belarus oak forests were prevailing, while in the west deciduous forests
were mixed with pine-deciduous ones. According to some works written on the subject of
vegetation development in European Russia in the Holocene (Khotinski, 1977; Velichko et al.,
2001; Sapelko et al., 2014; Ershova, Krenke, 2014; Novenko, 2016; Nizovtsev et al., 2020;
Kremenetski et al., 2000; Nosova et al., 2019; Tarasov et al., 2019; Miagkaia, Ershova, 2020), the
central regions of the East European Plain were covered with deciduous forests of oak, elm and
linden with hazel undergrowth. In the lands of Belarusian Polesia, Prinemanye and Meshchera
Polesia Lowlands the pine forests were growing along with some deciduous species and alder
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(Bolikhovskaya, 1988; Zernitskaya et al., 2019, 2010; Novenko et al., 2016).

Many literary sources were written on the subject of reconstructions of the Atlantic climate
conditions of the Holocene on a global scale (Guiot et al., 1993; Cheddadi et al., 1997; Tarasov
et al., 1999; Dauvis et al., 2003, Mayewski et al., 2004; Wu et al., 2007; Mauri et al., 2015), as well
as on a regional one (Korhola et al., 2000; Heikkild, Seppd, 2003; Seppa, Poska, 2004; Antonsson,
Seppd, 2007; Borisova, 2019). While analyzing the existing data on the paloclimate conditions at
8.0-5.7 ka BP in Central and Eastern Europe, we can conclude that climate became warmer and the
temperature gradient weakened from east to west. For example, the reconstructions performed by
W.H. Zagwijn (1994) with the method of indicator species, on the basis of the data taken from 136
profiles throughout Europe, showed that the summer and winter temperatures of Germany and
Western Poland were very close to the modern ones (T=-1...0°C; Tvi=19°C). Reconstructions of
paleotemperatures by the “Best Modern Analogue technique” on the basis of profile data obtained
from Lednitza Lake in Central Poland (Barber et al., 2004) determined that the average January
temperature was about 0°C, which is 2°C higher than nowadays.

The reconstructions obtained with the help of transfer function on the basis of the palynological
data that was taken from the profiles of Raigastvere (Fig. 4), Viitna and Ruila lakes in Estonia,
show that the average annual temperatures in the Mid-Holocene grew up to 8-9°C, which is 3-3.5°C
higher than the modern temperatures (Seppd, Poska, 2004). The reconstructions of summer
temperatures by the same method based on data from Kuryanovas Lake in Latvia, indicate that
summer temperatures grew up to 19-20°C, i.e. 2-3°C higher than they are today (Heikilla, Seppa,
2010). When paleotemperature data (Seppd, Poska, 2004), based on 36 reconstructions of the
average annual temperature and temperature of July, estimated for individual profiles of
Scandinavia and the Baltic states, was generalized, it was determined that at 8.0-4.8 ka BP there
was an obvious maximum of climate heat availability, when the annual air temperatures were
exceeding the modern ones by 2°C in general.

A significant climate warming at 8.5-5.7 ka BP was also registered in Northern Belarus.
The average annual temperatures increased by 2-4°C in comparison to the modern ones, and the
winter temperatures grew significantly (Zernitskaya, Novenko, 2016).

The reconstructions of climatic characteristics in the eastern part of the studied latitudinal
transect, were based on the palynological data of the Staroselsky Mokh bog (Fig. 4) and revealed
that conditions of heat availability in the south of the Valdai Upland at 7.5-6.5 ka BP were close to
the modern ones; while at 6.5-5.9 ka BP the average annual temperature was 6°C, exceeding the
modern ones by 2°C. According to the reconstruction carried out by O.K. Borisova (2019) on the
basis of the analysis of ecological confinement and geographic distribution of fossil flora from the
Atlantic sediments of the Holocene, the heat availability in the Upper Volga Basin was significantly
higher for the entire period of 7.6-5.9 ka BP. The average January temperature exceeded the modern
values by 6°C, and the average July temperature was close to the modern ones (17°C). As our
reconstructions demonstrate, based on palynological data from the Klyukva bog (Fig. 4), in the
northwest of the Central Russian Upland a significant warming was registered for the period of 7.5-
5.7 ka BP, when the average annual temperature was 3°C higher than nowadays.

Generalization of palynological data from more than 5000 profiles of Europe (Davis et al.,
2003; Mauri et al., 2015) made it possible to determine 6 regional types of paleoclimatic changes.
These calculations showed that the maximal heat availability in the Atlantic period was very
prominent in Northern Europe and Fennoscandia, mostly due to the growth of summer
temperatures. In Central Europe the thermal maximum of the Mid-Holocene was weaker, and the
positive anomalies of average annual temperatures did not exceed 1°C (Fig. 3). The same results
were obtained by the researchers of the BIOMEG0O Project (Wu et al., 2007) and by R. Cheddadi
et al. (1997), who used the data of the bioclimatic modeling on the basis of the palynological
materials around the world. However, according to these model calculations, climate warming in
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the northern and Atlantic regions of Europe took place both during the summer and winter periods.
It is worth noting that during the climatic changes analysis in the said works only a small amount of
data from the regions east of Poland was took into account.

Reconstructions of quantitative values of climatic characteristics of the Northern Hemisphere
were carried out by A.A. Velichko et al. (Paloclimates and Paleolandscapes ..., 2009) on the basis
of the data of 400 spore-pollen diagrams. They showed that the most positive deviations of average
annual air temperature were common for the circumpolar regions. In the mid-latitude Europe belt
the average annual temperature was higher than the modern one by 1-2°C. The reconstructions
obtained by P.E. Tarasov et al. (1999) for the chronological profile 6000 **C BP (about 6.8 ka BP)
for the territory of the former USSR and Mongolia showed the same result, with the average annual
temperatures exceeding the modern ones by 2°C in European Russia.

There are not many quantitative estimations of the average annual precipitation in the
Holocene. Mostly, they consist of indirect data on climate humidity changes for various regions.
According to the reconstruction of the annual precipitation sum deviating from the modern values in
the Northern Hemisphere at approximately 6.8-6.3 ka BP (6.0-5.5 ka *C years ago), calculated by
A.A. Velichko et al. (Paleoclimates and Paleolandscapes ..., 2009), the average annual precipitation
in Central Europe was close to the modern values, while in Eastern Europe it decreased by 25 mm
per year in the studied transect. Similar results were obtained for the same area by G. Guiot et al.
(1993). Their calculations of the difference between precipitation and potential evaporation showed
that the climate was slightly drier in Central Europe at about 6.8 ka BP (6000 *C BP), and the
humidity conditions were close to the modern ones in the territory of the East European Plain, with
the exception of the eastern part of European Russia.

The characteristics of climate humidity changes which we obtained for the territory of the East
European Plain, showed that the annual precipitation in Northern Belarus (Zernitskaya, Novenko,
2016), in the west of European Russia on the Ilmen Lowland (Nososva et al., 2019), and in the
northwest of the Central Russian Upland (Klyukva bog) was close to the modern values, which,
together with the summer temperatures rise, could possibly cause the drying of the climate due to
increased evaporation. In the south of the Valdai Upland, according to the reconstruction based on
the data from the Staroselsky Mokh bog, the annual precipitation at 7.5-6.8 ka BP was lower by 50-
75 mm than now, while humidity conditions at 6.8-6.1 ka BP were close to the modern ones.
Reconstructions made by V.A. Klimanov on the basis of the data from the Polovetsko-Kupansky
bog, also showed that the average annual precipitation decreased by 25-50 mm in the Yaroslavl
Volga Region during the entire Atlantic period of the Holocene (Khotinski, Klimanov, 1997).
According to O.K. Borisova (2019), the annual precipitation was about 600 mm per year for the
same territory, which is close to the modern values.

To characterize the humidity conditions during the Holocene, we used the climate moisture
index (CMI). It is based on the ratio of annual precipitation and potential evaporation or volatility
(Olchev et al., 2020). The required potential evaporation is calculated with the help of the Priestley-
Taylor equation, using the data on vegetation and temperature changes, which was reconstructed
from palynological data obtained from the Staroselsky Mokh and Klyukva bogs. The calculations
showed that evaporation rate on the Valdai Upland was almost equal to the amount of precipitation
at 7.0-5.5 ka BP, while in the north of the Central Russian Upland it exceeded them (Fig. 4),
indicating there were relatively dry climatic conditions (Novenko et al., 2018, 2019).

One of the indirect indicators of humidity decrease in the Mid-Holocene is the data on the lake
level changes. Generally, in Central Europe the decrease happened about 7.0 ka *C years ago
(Magny, 2004). However, the lakes levels in some regions, i.e. Southern Sweden, could
significantly drop as well as rise (Harrison, Digerfeldt, 1993). The research on the river bends
morphology, carried out by A.Yu. Sidorchuk et al. (2012), proves that level of the rivers dropped
during the same time period in the East European Plain. Formation of small river paleobeds and soil
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horizons in the floodplains in the northern and central parts of the East European Plain indicates that
in the Holocene water discharge that was forming the riverbeds significantly decreased for a long
period, and the floodplains were waterlogged (Sidorchuk et al., 2018).

Another approach to the humidity conditions assessment is the reconstruction of the changes of
the bog waters level by the rhizopoda data. These calculations used a transition function on the
basis of the species composition changes in the testate amoebae communities from the Tukhola bog
in Northern Poland (Lamentowicz et al., 2008). They identified an extremely dry period at 7.15-
6.8 ka BP, which correlated well with the data on the level fluctuations in the lakes of the same
region (Ralska-Jasiewiczowa, 1989). The researches in the south of the Valdai Upland allowed us to
determine 2 periods at 7.0-6.2 and 6.0-5.5 ka BP, when the surface humidity decreased in the
Staroselsky Mokh bog (Fig. 4), which was apparently due to the dry summer (Novenko et al.,
2018). The similar results were obtained after a rhisopodic analysis of the Klyukva bog on the
Central Russian Upland (Novenko et al., 2019), where the period of decreased water level in the
bogs was registered between 6.8 and 5.5 ka BP (Fig. 4).

5.7 ka BP — present
(Mid-Late Holocene, Subboreal and Subatlantic Periods)

Landscape-climatic reconstructions in the various regions worldwide are very convincing to
demonstrate that after 5.7-5.5 ka BP the global warming of the Holocene thermal maximum
changed to a cold snap (Khotinski, 1977; Borisova, 2014; Davis et al., 2003; Wanner et al., 2008;
Mauri et al., 2015), which was apparently caused by a decrease of solar radiation during summer
(Fig. 3; Berger, Loutre, 1991). During the same period the mountain glaciers started to advance
widely, indicating the beginning of the “neoglacial” (Wanner et al., 2008; Solomina et al., 2008),
and the westerlies intensified (Fig. 3; Mayewski et al., 2004). It was discovered that the amount of
mineral particles in the North Atlantic marine sediments increased again due to iceberg spacing
(Fig. 3), and the psychrophilic species of planktonic foraminifera appeared (Bond et al., 2001).
The global cooling trend in the Late Holocene can be clearly traced by the change in the isotopic-
oxygen composition of the Greenland glacial cores (Mayewski et al., 2004; Vinther et al., 2006).

The second half of the Holocene had a complex dynamics of plant communities in Central and
Eastern Europe due to climatic changes and anthropogenic factor, the impact of which had
intensified in the last millennium. Starting at 5.7 ka BP, in the eastern part of the studied latitudinal
transect the area of oak and pine-oak forests decreased, while hornbeam and beech spread and
strengthen their roles as the dominants of the forest communities (Fig. 1). The spread of beech
forests was slightly delayed from west to east. Thus, the rise of its curve in Eastern and Central
Germany, in the Rhine, Weser and Saale basins was at 3.7-3.9 ka BP; but in Western Germany,
in the Elba and Oder basins as well as in Western Poland beech became the main forest-forming
species only at 2.8-2.6 ka BP (Jahns, 2000; Lamentowicz et al., 2008; Gatka et al., 2013). In Central
and Eastern Poland (Ralska-Jasiewiczowa et al., 2003) hornbeam and pine with a significant
amount of oak were the main forest-forming species. The formation of hornbeam forests started at
about 3.5 ka BP after it gradually replaced oak and linden.

The second half of the Holocene in the territory of Northern and Central Belarus (Belorussian
Lakeland), in Estonia, Latvia and Lithuania, was characterized by the spreading spruce (Zernitskaya
et al., 2010; Seppd, Poska, 2004; Zernitskaya, Mikhailov, 2009; Niinemets, Saarse, 2009).
The researchers of these regions distinguish several consistent phases of increase and decrease in
the fraction of spruce and deciduous species of forest communities starting from about 5.7 ka BP.
The hornbeam pollen was found everywhere in the spore-pollen spectrum from the profiles in the
territory adjacent to the Baltic Sea. However, its content did not exceed 1-2%.

In the center of the East European Plain the reconstruction of vegetation cover happened due to
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an increase of spruce abundance, which occurred transgressively from north to south (Fig. 2).
On the Valdai Upland and in the Upper Volga basin the formation of spruce-deciduous forests
(the “upper maximum of spruce”) happened at 5.5 ka BP (Klimanov et al., 1995; Velichko et al.,
2001; Klimenko, Klimanov, 2003; Novenko, 2016). In the Vyatka-Kama territory the amount of fir
in forest communities increased (Lychagina et al., 2016). On the Smolensk-Moscow Upland
the increase of spruce fraction began around 2.7-2.5. ka BP, although it was already presented there
in small amounts (Kremenetski et al., 2000; Ershova, Krenke, 2014; Nizovtsev et al., 2020;
Miagkaia, Ershova, 2020). In the south, in the basin of the Upper Oka of the Central Russian
Upland deciduous forests of oak, elm and linden were preserved throughout the Holocene. Spruce
grew on the edge of its habitat and began to enter forest cenoses at 2.5 ka BP in the ecotopes with
favorable conditions.

In the area of psammophytic-pine-forest landscapes of Polesie, pine and deciduous-pine forests
remained a part of vegetation cover until 2.7 ka BP. In Belarusian Polesia during the 2.7-1.0 ka BP
the amount of hornbeam pollen in the spectrum increased up to 10%, which indicated the
distribution of mixed pine-deciduous forests with oak and hornbeam, with addition of linden, elm,
spruce, and possibly beech as well (Zernitskaya et al., 2010, 2019). In the east, in the forest belt of
European Russia, the participation of deciduous pollen decreased, the hornbeam pollen was found
sporadically, and the fraction of pine, birch and grasses increased (Bolikhovskaya, 1988; Novenko
et al., 2016, 2018).

From 5.7 ka BP the main tendency of climatic changes was showing in decreasing heat
availability and increasing climate humidity (Dynamics of Landscape Components ..., 2002;
Borisova, 2014). The reconstructions of paleotemperatures changes in Central Europe were obtained
by B. Davis et al. (2003) on the basis of palynological data showed that unlike in Northern Europe,
where the cold snap of the last 5 millennia was especially pronounced, the average temperature drop
for January, July and the entire year in the mid-latitude Europe was not higher than 2°C.

Since the reconstruction possibilities of paleoclimatic characteristics in the eastern part of the
studied latitudinal transect are limited due to the distorted spore-pollen spectrums, which are the
result of anthropogenic factor impact, some works usually use different sources of paleographic
information to restore the conditions of the past. Considering a large amount of data on the structure
of peat deposits, stage of peat humufication and results of rhisopodic analysis of the sediments from
the upper bogs of the United Kingdom, Ireland, Netherlands, Northern Germany, Denmark and
Sweden, we can define the phases of cold snaps and climate humidity at about 4.4-4.0, 2.8-2.2, 1.8-
1.7, 1.4-1.3 and 1.1-1.0 ka BP, as well as climate fluctuations during the last millennium (Charman,
Hendon, 2000; Barber et al., 2004; Liicke et al., 2003). On the basis of the paleobotanical analysis
of the bog sediments in Netherlands, B. Van Geel (1978) discovered a significant cold snap and
increase of precipitation at about 2.6 ka BP.

The indirect indication of cooling and climate humidification can be the data on the periods of
increased flood level, obtained in Poland on the basis of the geomorphological researches.
L. Starkel et al. (2013) determined the 3 periods of the second half of the Holocene: 6350-6300,
4825-4775 and 3230-1950 ka BP. The reconstructions of the water level in the upper bogs
ecosystems in Northern Poland on the basis of peat decomposition data and species ratio in the
testate amoebae communities made it possible to discover a humid phase at 2.75-2.4 ka BP and a
dry phase at 2.25-2.1 ka BP (Lamentowicz et al., 2008). According to the results obtained after a
study of the composition and radiocarbon dating of alluvial sediments in the East European Plain
(Panin, Matlakhova, 2015), the increase of river flow in the Early Subboreal (about 5.7 ka BP) and
Early Subatlantic periods (about 2.6 ka BP) was discovered.

In the northwest of the East European Plain, in the Baltic states, according to climatic
reconstructions based on palynological data from Kuryanovas Lake in Latvia (Heikkila, Sepp4,
2010) and Raigastvere, Viitna, and Ruila lakes in Estonia (Seppd, Poska, 2004), the average July
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temperature and the average annual temperature from 5.7 ka BP up to the present time decreased by
3-3.5°C. In the general cooling trend the periods of warming at about 3.6 and 2.0 ka BP, of cooling
at 2.5 ka BP, and an abrupt and deep decrease of heat availability of the Little Ice Age can be
distinguished (Fig. 4).

Climatic reconstructions made on the basis of the data from North Belarus (Zernitskaya,
Novenko, 2016) and European Russia on the llmen Lowland (Nosova et al., 2019) and Valdai
Upland (Novenko et al., 2018), showed that at about 5.7 ka BP the average annual air temperatures
decreased by 2-3°C (Fig. 4), and precipitation values were close to the modern ones, while at about
4.5 ka BP their amount increased up to 800 mm/year, i.e. they were 100 mm higher than now. In the
south of forest zone of the Central Russian Upland (on the Klyukva bog) the average annual
temperatures dropped by 1-2°C and reached the modern values, and precipitation was about
600 mm/year (Fig. 4). The cold snap and increased humidity that happened at 4.5 ka BP can be
compared quite conditionally to the “4.2 ka BP event”.

The “4.2 ka BP event” is not fully studied yet. There are very few works in Europe with
climatic reconstruction and paleoenvironment changes being the center of attention. Moreover, the
reconstructions from various natural archives are contradictory, and the climatic signals that were
identified in them are asynchronous (Roland et al., 2014; Pleskot et al., 2020). Generally, for
Northern Eurasia there was a hypothesis about an increased temperature amplitude between the
seasons during the “4.2 ka BP event” (Persoiu et al., 2019). A decrease in winter temperatures is
considered to be due to the weakening Icelandic minimum (Bradley, Bakke, 2019).

The climatic reconstructions that we obtained from the profiles of Mezhuzhol Lake
(Zernitskaya, Novenko, 2016) and the Staroselsky Mokh and Klyukva bogs made it possible to
distinguish a warm and extremely dry phase between 3.5 and 2.5 ka BP. During this period the
average annual and summer air temperatures exceeded the modern ones by 1-2°C, while the amount
of precipitation was close to the modern ones or just slightly lower (Fig. 4). According to the data
from the Staroselsky Mokh and Klyukva bogs profiles, for this period a low CMI index, as well as
the lowest water level for the entire Holocene was reconstructed, which indicates there was a
significant drop of surface humidity of bog ecosystems during summer, apparently, due to a change
in the precipitation/evaporation balance (Novenko et al., 2018, 2019). The warming at 3.5 ka BP
was also recorded in the climatic reconstructions for the Yaroslavl Volga region, based on the
palynological materials of the Polovetsko-Kupan bog and Galich Lake (Klimanov et al., 1995;
Velichko et al., 2001), according to which all temperature indices exceeded the modern ones by
1.5°C. The increased K* content in the GISP2 ice core in Greenland during the said period (Fig. 3;
Mayevski et al., 2004) indicates that the impact of the Siberian High intensified, which probably
caused an increased frequency of anicyclonic situations in the East European Plain, causing
droughts in summer and creating conditions for wildfires. The studies of the changes in fire regimes
in the East European Plain during the Holocene were based on calculations of coal micro- and
macroparticles concentration in sediments, and showed that frequency and intensity of forest
wildfires at 3.5-2.5 ka BP increased for different regions (Novenko et al., 2016, 2019).

The warming was gradually replaced with a cold snap in the Early Subatlantic period (at about
2.6-2.5 ka BP). The cooling can be clearly traced by the paleobotanical data (Davis et al. 2003;
Mauri et al., 2015) and isotope-oxygen composition of Greenland ice cores (Thomas et al., 2007).
It was also accompanied by a simultaneous growth of glaciers around all European mountainous
countries (Wanner et al., 2008; Solomina et al., 2008). The cold snap was not monotonous and had
a series of warm and cool phases. During the first millennium AD many researchers distinguish the
Roman Warm Period (2.0-1.7 ka BP) and the Dark Ages Cold Period (1.7-1.2 ka BP; Buntgen et al.,
2011; Helama et al., 2017; Gouw-Bouman et al., 2019).

The review of 114 articles on the subject of the Dark Ages Cold Period around the world was
carried out by S. Helama et al. (2017). It showed that European climate was more cool and humid
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than it is nowadays. At 1.7-1.5 ka BP the mountain glaciation increased (Solomina et al., 2008),
the lakes level rose (Magny, 2004), and the amount of forests grew in the forest-steppe zone
(Novenko, 2016). However, the reconstructions obtained for the East European Plain by the
informational-statistical method and based on the data from the Usvyatsky Mokh bog (Daugava
River) prove there was a climate warming and drying between 1700 and 1500 BP (Kozharinov
et al., 2003); the calculations on the basis of the data from the Polovetsko-Kupanskoye bog in the
Yaroslavl Volga Region show there was a warming and an increase of precipitation during the same
period (Klimanov et al., 1995). The reconstructions that we obtained by the “method of better
analogues” generally showed a growth of heat availability and decrease of humidity during the
Roman Warm Period, followed by a cold snap and increasing precipitation. Unfortunately, in the
studied profiles the said time periods are represented by a small amount of samples, which makes it
difficult to reconstruct.

Landscape-climatic changes in the last millennium are studied thoroughly and widely with the help
of different methods (Klimanov et al., 1995; Mann et al., 2009; Wanner et al., 2008; Christiansen,
Ljungqvist, 2017; Pages 2k Consortium, 2013, 2017). As the result, 2 main climatic phases were
classified: Medieval Climate Anomaly (950-1250 AD) and Little Ice Age (1400-1850 AD).

Paleoclimatic reconstructions that were made using various nature archives characterize
the Medieval Climate Anomaly as a warm and relatively dry period (Goosse et al., 2005). There is a
data on repeating summer droughts in some European regions (Blintgen et al., 2010) and on decreasing
river flow during the same period (Panin, Matlakhova, 2015), although the results of some paleoclimatic
researches indicate that the average annual precipitation sum increased (Davis et al., 2003).

According to paleoclimatic reconstructions based on the palynological data for Raigastvere
Lake, the average annual air temperature during the Medieval Climate Anomaly in the Baltic states
exceeded the modern ones by 1°C (Seppa, Poska, 2004). In the spore-pollen spectrum from the
sediments of some profiles from the central regions of European Russia (Khotinski, 1977;
Klimanov et al., 1995), which are part of the Medieval Climate Anomaly, an increase of the
deciduous species (oak, linden, elm) fraction was registered. Reconstructions of paleotemperatures
for the south of the Valdai Upland showed an increase in the average annual temperatures by 1.5°C.
The calculations carried out by V.A. Klimanov et al. (1995) for the Yaroslavl VVolga region, showed
that all temperature characteristics during the Medieval Climate Anomaly were close to the modern
ones, while the amount of precipitation was 25-50 mm lower.

An abrupt and deep drop of heat availability during the Little Ice Age was registered everywhere
in the studied territory as well as in the entire Northern Hemisphere (Christiansen, Ljungqvist, 2017).
It is possible that temperature decrease in the Little Ice Age was the most significant one among all
climate oscillations of the Holocene, with the exception of “8.2 ka BP event”.

During that period the anomalies of summer, winter and average annual air temperatures in
Central Europe were 1°C (Dauvis et al., 2003; Mauri et al., 2015). The reconstructions carried out by
K. Barber et al. (2004) on the basis of palynological data of the profile from Lednitsa Lake in
Eastern Poland revealed a more significant winter cold snap, when the average January
temperatures and average annual ones were lower by 2.5°C than the modern ones. For Baltic
territory a significant increase of heat availability was determined on the basis of some profiles.
The average annual temperatures were lower by 2°C than the modern ones (Seppa, Poska, 2004).

On the Valdai Upland the average January temperature during the Little Ice Age declined by
3°C (down to —12°C), while the average annual temperature decreased by 2°C, and the temperature
of June did not change significantly. The share of thermophilic elements in the spore-pollen
spectrums of that period abruptly dropped and became almost absent, although the role of spruce
pollen increased. In the spectrums of the Polovetsko-Kupanskoe Bog that period resulted in
degradation of deciduous species and a significant increase of dwarf birch. V.A. Klimanov et al.
(1995) wrote that aside from a winter temperatures drop, this cold snap had a summer temperatures
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and average annual temperatures drop as well. The deviation of the average annual ones from the
modern ones was 2°C.

Climatic changes during the Little Ice Age had a great effect on a fluvial sedimentation both in
Central and Eastern Europe. The increasing frequency and level of spring floods, as well as
formation of secondary down-cuttings in the ravines and gullies prove the climate humidity growth
during that period (Sidorchuk et al., 2018; Panin, Matlakhova, 2015).

The main patterns of climate dynamics in Central and Eastern Europe in the Holocene
and the expected landscape-climatic changes

According to the concept of asymmetry of the main climate trend during the interglacial period
(Velichko, 2012), the average annual air temperature was growing fast in Northern Eurasia during
the Early Holocene and gradually declining during its second half. The estimations showed that the
warming trend from the Late Glacial period to the Holocene optimum was 0.5° for 1000 years,
while for the second half of the warm period this trend did not exceed 0.3° for 1000 years
(Borisova, 2014). However, it should be noted that the said reconstructions of peleotemperatures for
Central and Eastern Europe in the Holocene demonstrate that declining heat availability for the
period which came after thermal maximum, has not yet reached the Early Holocene level (Davis
et al., 2003; Novenko et al., 2018, 2019).

The data studied above made it possible for us to determine 3 main stages of the changes in the
Holocene climatic regime: rapid warming in the Early Holocene (11.7-8.0 ka BP), complicated by
oscillations; Holocene thermal maximum (8.0-5.7 ka BP), without any short-term and abrupt
climatic changes; directed temperature drop in the second half of the Holocene (5.7 ka BP —
present), with quasi-harmonic fluctuations of air temperature and precipitation.

The analysis of landscape-climatic reconstructions for Central and Eastern Europe showed that
the periods of cold snaps, separated with climate warming, generally match the global periods
(Mayewski et al., 2004). The time differences between beginning and end of the warm and cold
periods in different regions are about 100-200 years, which falls within the admissible error of
radiocarbon dates and may also depend on constructing errors of the age/depth models for specific
profiles which were used for reconstructions.

A “critical point” of climatic changes related to “8.2 ka BP event”, which the International
Commission on Stratigraphy suggests considering as a border between the Early and Mid-Holocene
(Walker et al., 2019; Head, 2019) in Central and Eastern Europe, is a turning point of climate
system transition from the warming in the Early Holocene to the thermal maximum. Climatic
changes related to “4.2 ka BP event”, which is considered to be a border between the Mid- and Late
Holocene (Head, 2019), is not seen as clearly in our materials as the cold snap at 5.7 ka BP. Starting
from 5.7 ka BP, the direction of climatic trend was changing in Central and Eastern Europe, and
sectorial differentiation of vegetation cover was increasing. Beech and hornbeam expanded
throughout the western regions, while spruce was spreading in the east.

According to the last estimations of the Intergovernmental Panel on Climate Change
(IPCC, 2013), based on the results of the Coupled Model Intercomparison Project, Phase 5, by the
4 main scenarios of representative trajectories of green gasses concentrations (RCP2.6; RCP4.5;
RCP6.0, RCP8.5), the rise of average global temperature by the end of the current century will start
at 0.3°C (RCP2.6 is the most gentle scenario) and go up to 4.8°C (RCP8.5 is the most harsh
scenario). The amount of precipitation will grow by 6% (RCP2.6) up to 12% (RCP8.5). When
estimating the increase of average annual air temperature in Central and Eastern Europe by the end
of the XXI century, the said scenarios make us to assume that it will rise by 2.0-2.5°C according to
the gentle scenario and by 6.0-7.0°C according to the harsh one. The increase of average annual
precipitation will start from 7% (RCP2.6) up to 15% (RCP8.5; IPCC, 2013).
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Using the method of paleoanalogues that was offered by M.l. Budyko (1980) and is widely
used A.A. Velichko et al. (2012; Climates and Landscapes of Northern Eurasia ..., 2010) to predict
the possible dynamics of landscapes and climate with the help of paleogeographic data, we can
suggest some conditions to be considered as possible trajectories of environment changes during
climate warming in case of RCP2.6 and RCP4.5 scenarios coming true. First, the conditions for the
Holocene thermal maximum (8.0-5.7 ka BP), when the average annual temperatures in the studied
region exceeded the modern ones by 2-3°C; second, the conditions for the warming periods during
3.5-2.5 ka BP, 2.0-1.7 ka BP (Roman warming) and the Medieval climatic anomaly, when the
average annual temperatures deviated from the modern ones by 1.0 and 2.0°C. The RCP6.0 and
RCP8.5 scenarios suggest a greater temperatures deviation than it was previously determined for the
Holocene. The paleoanalogues of these conditions should be sought in the conditions of earlier
interglacial periods.

Considering the landscape-climatic reconstructions for the Holocene of Central and Eastern
Europe, the internal structure of geosystems can be expected to change, especially in the eastern
area of the studied transect, as well as the frequency of wildfires caused by natural causes to grow,
and the frequency of catastrophes due to uneven precipitation to increase. However, even the most
abrupt transformations of landscape components in the Holocene took hundreds and thousands
years to happen, while the expected climate warming in the XXI century may take less than a
hundred years. The adaptive mechanisms of geosystems are relatively inert, so it is obvious that
forecast should take into account some response delay of landscape components to the process of
climate warming.
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